skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yunhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electric vehicles (EVs) have been used in the ride-hailing system in recent years, which brings the electric fleet management problem (EFMP) critical. This paper aims to leverage multi-agent reinforcement learning (MARL) in EFMP. In particular, we focus on how EVs learn to manage battery charging, pick up and drop off passengers. We propose an integrated SUMO-Gym framework based on the SUMO simulator to capture EVs’ asynchronous decisionmaking regarding charging and ride-hailing in complex traffic environments. We adopt a hierarchical reinforcement learning (HRL) scheme, where each EV decides to get charged or pick up a passenger on the upper level and chooses a charging station or passenger on the lower level. We develop a learning algorithm for the HRL scheme to solve EFMP and present numerical results about the efficiency of our algorithm and policies EVs have learned in EFMP. Our codes are available at https://github.com/LovelyBuggies/SUMO-Gym, which provides an open-source environment for researchers to design traffic scenarios and test RL algorithms for EFMP. 
    more » « less
  2. null (Ed.)